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SUMMARY 

Two-dimensional steady flow of an ideal fluid with a free surface over a semi-elliptical body attached to 
the bottom of a stream is considered. A numerical method is presented for computing the values of the 
ellipse length at which the non-linear wave train normally present downstream of the body vanishes, and 
the semi-elliptical body therefore experiences no wave resistance. These special ellipse lengths are shown 
to be such strong functions of the ellipse height that the predictions of linearized theory are grossly inad- 
equate in general. 

Introduction 

In a recent paper of  the author [1] ,  the two-dimensional free-surface flow of  an ideal fluid 

over a semi-elliptical bump on the bo t tom of  a running stream was investigated. The free 

surface was shown to possess a local disturbance above the semi-elliptical body,  followed in 

general by  a train of  non-linear downstream waves. The energy radiated away to infinity by 

this wave train is balanced by  a horizontal  force component  (the wave resistance) acting on the 
body.  

A linearized solution to this problem was developed by  Lamb [2, p. 409] .  A feature of 

Lamb's theory is that  the downstream wave train is predicted to vanish for ellipses of  certain 

special lengths, resulting in a wave resistance of  precisely zero in these instances. In fact, there 

is a countably infinite set of  ellipse lengths for which the wave drag vanishes, when the ellipse 

height and the upstream Froude number o f  the flow are both fixed. 

It was demonstrated in our previous paper [1] that solutions possessing no downstream 

wave train are also obtained in the fully non-linear problem, and, as with the linearized theory 

o f  Lamb, there is probably an infinite spectrum of  ellipse lengths for which such solutions 

occur, for fixed upstream Froude number and ellipse height. However, unlike Lamb's theory,  

these special ellipse lengths are also strong functions of  the ellipse height, as well as of  the 

upstream Froude number. These findings are consistent with recent work o f  von Kerczek and 

Salvesen [3] and Schwartz [4],  who considered the effects o f  a given pressure distribution 
applied to the surface of  a running stream. 

In this paper, we present a numerical method for explicitly determining those values of  the 
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ellipse length at which the non-linear wave drag vanishes. The problem is formulated as in 
Forbes [ 1 ],  by first transforming the bottom into a straight line, and then seeking the solution 
in the inverse plane, with the velocity potential and streamfunction as the independent vari- 
ables. The free-surface profde and the ellipse length are obtained using an efficient boundary° 
integral formulation of the problem, which involves values of the unknown functions over 
only half of the free surface; consequently, there is no need to place numerical grid points 
throughout the entire fluid region. The results are expected to be of importance in the design 
of certain underwater craft. 

2. Formulation of the problem 

Consider a semi-ellipse of length 2 R x  and height R y  placed on the bottom of a running 
stream, with the origin of a cartesian coordinate system at the centre of the ellipse, and the 
y-axis pointing vertically. The fluid is incompressible and flows without rotation. Far upstream 
the flow is uniform, with depth H and speed c. The fluid is subject to the downward acceler- 
ation of gravity, g. 

The problem is immediately non-dimensionalized, by referring all lengths to the quantity 
H, the horizontal and vertical components of velocity (u and 7;) to the speed c, and the velocity 
potential ¢ and streamfunction ~k to the product cH.  Thus the bottom is the streamline ff = 0 
and the surface is ff = 1. The three dimensionless parameters of the flow are 

c R x Ry 
F -  (gH) l /2  , o t -  H and 13 H ' 

where F is the upstream Froude number, and a and/3 are the dimensionless ellipse half-length 
and height, respectively. The non-dimensional flow situation is depicted in Figure 1. 
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Figure 1. The non-dimensional flow situation in the z-plane. 
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At the free surface o f  the fluid, we impose the Bernoulli equation 

½F2(u 2 +v2)+y  = ~ [ F  2 "1- 1.  

The condition o f  no flow normal to the bot tom y = h (x) is expressed by the equation 

d h  
u ~ x  = v on y = h ( x )  

where 

- - X 2 )  1/2 , Ixl ~< a. 
Ot 
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(1) 

(2) 

Since the fluid is incompressible and flows irrotationally, it follows that the complex potential 
f =  ¢ + iff may be expressed as an analytic function of  z = x + i y .  In order to correctly 

account for the fluid behaviour at the stagnation points at z = + a, the channel bed is trans- 
formed into a straight line, by means o f  the conformal map 

z = r + - ~ ( :  _a2) l ,~ ,  (3) 

where the new variable is written r = ~ + ir~. Following Forbes [1],  the r61es o f  the variables 
f and 7- are now interchanged, so that the quantity r = ~ + iT is to be sought as an analytic 

function of  the independent Variable f =  ¢ + i~b. In the f-plane, the Bernoulli equation (1) 
becomes 

~ ( A  2 + s 2 )  1 ~ s  ½F ~ ~F2(otA+3~)2+(aB+~)2 rO---~-~ + r / + a  = + 1  on ff = 1, (4) 

where we have defined 

(r 2 - a 2 )  1/2 = A + i B .  

The bar and the subscripts denote complex conjugation and partial differentiation, respectively. 
The bot tom condition (2) now takes the simple form 

r/ = 0 on ff = 0. (5) 

In reference [1] it was shown that the real and imaginary parts o f  the function d ' c / d f a t  

the free surface ~k = 1 are related by means o f  the integro-differential equation 
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,, ] 

= - - ~ -  0 - - ~  (O--q~) 2 + 4  )" 

dO 

( 0 - - ¢ )  2 + 4 

(6) 

Note that the bottom condition (5) has been satisfied automatically in equation (6), by 
reflection about ~O = 0. 

In the present problem, we seek the special values of the ellipse half-length a for which 
the wave drag is zero. There is thus no downstream wave train, and consequently, the surface 
profile is symmetric about ¢ = 0 (~ = 0). Equation (6) may therefore be written 

] 
f o [  (1 ~) -~]  [ 1 1 ] 2 ~ o ( O , 1 ) -  + + 

rr ( 0 - -~ )2  + 4  ( 0 + ~ ) 2  + 4  

[ 1 + 1 ]  
1 - ~ o ( 0 , 1 )  0 - - ~  0 + ¢  dO 

- ~ o ( O ,  1) + dO. 
7r ( 0 7 ~ 2 - 4 - 4  (O+dp) 2 + 4  

dO 

(7) 

The solution is thus obtained by solving equation (7) coupled with the Bernoulli equation (4), 
and subject to the condition 

z - + f  as ¢ ~ _+~o, (8) 

which is necessary to prevent a wave train from appearing either upstream or downstream of 
the ellipse. The solution is obtained parametrically, in the form (~(~, 1), r~(¢, 1)), and the 
original variables x and y are recovered from equation (3). The problem thus posed is, in 
fact, a non-linear eigenvalue problem, in which the eigenvalue is the ellipse half-length a, and 
the shape of the free surface is the associated eigenfunction. 

3. Numerical methods 

The numerical method for the solution of the system of equations (4), (7) and (8) is similar to 
that described in previous papers [1, 4, 5], and consists of attempting to satisfy the equations 
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at N + 1 equally spaced free-surface points ¢o, ¢, . . . . .  CN. Here, ¢o = 0, and CN is chosen 
to be an appropriately large, positive number. 

The integrals in equation (7) are first truncated downstream at the point CN, and the 
equation is evaluated at the N midpoints Ck -,/z,  k = 1 , 2 , . . . ,  N. The singularity is subtracted 
from the Cauchy Principal Value integral, and the integrals are discretized using Simpson's 
Rule. A three-point interpolation formula, consistent with the parabolae fitted by Simpson's 
Rule, is used to express the quantities ~¢, and r/~, at the midpoints in terms of values of  these 
quantities at the mesh points ¢i, ] = 0, 1 . . . . .  N. Thus equation (7) is replaced by a matrix 
system of the form 

" [ t E ak.j ~21-- 1 +  
j = ,  

- ,  [ 
~., bk jr l j  + ck ~2'o --  + 

./=, 

+d~r l~+ekr /~v ,  k = 1 . . . .  ,N, 

in which the quantities a~j, bkj etc. are functions only of ¢ and of the integration and interp- 
olation formulae. The primes denote differentiation. Upon inversion of a matrix, the solution 
is obtained in the form 

( t1 [ ( t1] t t 

i = 1 + + ~ Hij rlj + H i N  ~o -- 1 + 
j = l  

+HiN+mno +HiN+2~7~V, i = 1 . . . . .  N. (9) 

The symmetry of the surface profile about ¢o = 0 results in the conditions 

Go = n~, = o. ( lO) 

In order to satisfy equation (8), we impose the following approximate conditions at the last 
point CN downstream: 

ot 
nN = a2 _ ~ {a - -  ~ Im [(~N + i) ~ - -  a2  + ~= ] ,/2 }, n~V = 0. (1 1) 

The trapezoidal rule is now used to obtain ~7 at the remaining free-surface points. Thus 

t t t ¢ 

rli = r l N - - h ( ½ r ~ N + r t N  - ,  + . . . + r ~ i + ,  +½r/ i ) ,  i = N - - 1  . . . . .  1,0, (12) 

where h denotes the spacing between mesh points and is defined as h = ( ¢ l v -  ¢o) /N.  The 
Bernoulli equation at the first point ~o enables the quantity ~ to be eliminated in favour 
of quantities at the remaining free-surface points, according to the formula 
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~o = 1 F  aBo 
2 o~Bo + 3% 

I 1  2 
F 2 + 1 --Vo ----fiB( 

O/ 

1/2 

, ( 1 3 )  

where the variable B is defined in equation (4). Finally, the function ~ is obtained from the 
trapezoidal rule 

P t 
~i = ~0 ~ h ( ~  ~o q-~tl  a t - - . . " } - ~ i - 1  ']-½ ~ i ) ,  i = 1 , 2 , . . . , N .  (14) 

The Bernoulli equation (4), evaluated at the points ~j, j = 1 . . . . .  N, yields a system of N 
t algebraic equations in the N unknowns ~'a, r/~ . . . .  , ~TN-a, o~, after all other quantities have 

been eliminated using equations (9)-(14) .  This system may be written 

Pi(n'l ,  ' ' , a )  = 0 ,  i = 1 ,  , N ,  '/'/2, • • • , ~ N - 1  • • • (15) 

where Pi denotes the pressure at the i-th free-surface point. 
Equations (15) are solved by a Newtonian iteration scheme. Thus the solution at the k-th 

iteration is updated for the (k + 1) - -s t  iteration according to the formulae 

~7~ ( k + a )  = n': ( k ) +  A i ,  i = 1 . . . . .  N - - 1  

or(k+l) = o~( k ) + A N ,  
(16) 

where the vector A is the solution to the matrix equation 

ap~(k) ap~(k) aP~ <k) 

a 'r/'l " "  a r/~V_l act 

• , . 

'° aPg" 0p 'o 
anl  "'" an~-_~ a ~ -  

- q 

A1 

(17) 

The derivatives in the Jacobian matrix in equation (17) were approximated by forward differ- 
ences. If the root-mean-squared residual pressure, Prms, is greater at the (k + 1) -- st iteration 
than at the k-th, then the vector A is halved and the iteration (16) is repeated. 

The numerical solution of the non-linear eigenvalue problem defined by equations (4), 
(7) and (8) therefore proceeds as follows: firstly, an initial guess is made for the unknowns 

r i 77x . . . . .  r~N_l, a. An approximation based on Lamb's linearized solution (see [1, eq. 14]) 
is usually sufficient for this purpose• Thus we take 

g J l  ( O l s K )  s in  ( ~ )  
r~'(~, 1) = --13 } .  

. ~  1 
r cosh (K) -- ~ -  sinh (to) 

dK (18) 
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with 

i , o  
% = :_ae,  s = 1 ,2  . . . .  , 

/gO 

where/g o is the positive real root of  the transcendental equation 

tanh (g o) = F2  /g 0. 

The function J l  is the first kind Bessel function of  order one, and fl,s are  its zeros. The non- 
linear eigensolufion desired is usually obtained from the Newtonian iterations simply by 

choosing the appropriate value o f s  in the initial guess (18). Secondly, the pressure is computed 
at each free-surface point using equations (9)- (15) .  If Prms < 10-1°, the Newtonian process 
is stopped. Thirdly, a new estimate for the unknowns is obtained from equations (16) and 

(17). The process is now returned to the second step. 

Solutions to equations (15) are usually obtained rapidly, due to the quadratic convergence 
of  Newton's method. When N = 130, a converged non-linear free-surface profile is obtained 

from the initial guess (18) in about four iterations. The error involved in the discretization 

o f  the exact equations is nominally o f  the order of  the cube of  the spacing h between free- 
surface points; consequently, truncation error in the present problem is extremely small. 

4. Discussion of results 

In Figure 2, three non-linear free-surface profiles are shown for the case F = 0.8, /~ = 0.02, 

for the first three values o f  the ellipse half-length a at which the non-linear wave resistance 

vanishes. These profiles are symmetric about the centre-line x = 0. As in previous work [1, 5],  

it is found that a spurious wave train o f  extremely small amplitude is present downstream. 
It is a simple matter to demonstrate that this wave train is numerically generated and has no 
physical significance; in fact, it is a consequence of  the truncation of  the integro-differential 

equation (7) downstream at the last point qSN, and the subsequent imposition o f  the approxi- 
mate conditions (11) there. 

The values of  et at which the first two eigensolutions occur are t~ 1 = 3.973 and a2 = 6.660, 
where a 8 denotes the value o f  a at which the s-th non-linear eigensolution occurs. These results 
are in excellent agreement with the previous estimates a 1 ~ 3.95, ct 2 ~ 6.6 given by Forbes [ 1 ] 
for the same values o f f  and/3. Note that for the second eigensolution, there is a single ' trapped 

wave' in the portion o f  the fluid above the semi-elliptical body, although no waves are present 
in the far field. For the third eigensolution, two 'trapped waves' are present above the body. 
In general, it appears that the s-th eigensolution possesses s -- 1 waves ' trapped' in the region 
above the semi-ellipse. 

In the linearized theory o f  Lamb, the values of  the ellipse half-length %,  s = 1 ,2  . . . .  at 
which drag-free solutions exist are functions only of  F, and are independent o f  the ellipse 
height/3. However, in the fully non-linear problem, the eigenvalues % are also strong functions 
of/3. This is illustrated in Figure 3 for the first four eigensolutions, when the upstream Froude 
number is F = 0.5. The predictions of  Lamb's theory, computed from equation (18) with 
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Figure 2. Three non-linear free-surface profiles for the  case F = 0.8, ~ = 0.02, obtained for the first three 
eigensolutions. 
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Figure 3. The dependence of  the  ellipse half-length c~ at which the drag vanishes upon  the height/3, for 
F = 0.5. Results obtained from the linearized and non-linear problems are shown,  for the  first four eigen- 
solutions.  
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s = 1 . . . . .  4, are indicated with dashed lines on the diagram; since there is no dependence of 

as upon/3 in this theory, a series of  vertical lines at the values of a given by equation (18) 
are obtained. The open circles in Figure 3 represent results obtained from 68 converged non- 
linear free-surface profiles, for the first four non-linear eigensolutions, numbered 1 to 4 
respectively on the diagram. The various non-linear families of solution were traced using a 
'bootstrapping' process; a non-linear solution was obtained from the initial guess (18) for a 
suitably small value of/3, and was then used as the initial guess for a problem with/3 slightly 
increased, and so on. 

It is evident from Figure 3 that the effect of  non-linearity upon the eigenvalues as is extreme 
indeed. For small fl, the agreement between the linear and non-linear results is reasonably good. 
(Nevertheless, the linear and non-linear results cannot be expected to agree exactly even in the 
limit /3 ~ 0, since Lamb's theory does not correctly account for the fluid behaviour at the 
stagnation points at z = + a, as described in [5]). However, as/3 is increased, the values of  
as increase dramatically beyond the predictions of the linearized theory. In the case of the 
first eigensolution for example, the value of the ellipse half-length a at which a drag-free 
solution is obtained may become as much as 200% greater than the value of a l  obtained 
from linearized theory. 

Perhaps the most surprising feature of the non-linear results in Figure 3 is that the first 
and second eigensolutions ultimately merge together at the limiting value of the ellipse height 
/3 ~ 0.162. For larger values of/3, it is apparently not possible to obtain solutions of  this type. 
When/3 is small, the free surface for solutions of  type 2 possesses a single 'trapped wave' in the 
region above the body, similar to that shown in Figure 2. However, as/3 is increased, the relative 
amplitude of this wave decreases, and ultimately vanishes when/3 is close to the maximum 

value /3 ~ 0.162. Thus there is no doubt that solutions of type 2 evolve continuously into 
solutions of  type 1, and vice versa. By contrast, the third and fourth eigensolutions, shown 

in Figure 3, show no particular tendency to coalesce, and their fate at large /3 is therefore 
uncertain. In the case of solutions of  type 4, Newton's method was not capable of  yielding a 
converged solution for /3 larger than the maximum value for this family,/3 ~ 0.172, shown 

on the diagram. For the third eigensolution, results were obtained with/3 as large as 0.18. 
Although it appeared that Newton's method would converge for even larger values of/3, no 
attempt was made to seek such solutions, since it appears that results with/3 > 0.17 are possibly 
of doubtful accuracy for the third eigensolution. 

It has not been possible to determine from our solutions the nature of the physical process 
responsible for the merging of the first two families of drag-free solutions at/3 "~ 0.162. How- 
ever, it seems reasonable to conjecture that the phenomenon is related to the breaking of the 
waves formed downstream of the semi-elliptical bump in the general case when the ellipse 
half-length a takes a value different from the eigenvalues as, s = 1,2 . . . . .  It is possible that 
the third and fourth eigensolutions may likewise coalesce for some/3. 

5. Further remarks 

The values of the ellipse length at which the non-linear wave drag on the body vanishes have 
been shown in the present paper to be extremely strong functions of the ellipse height. For 
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ellipses o f  even quite modest  height, the linearized theory severely underpredicts the value of  

the ellipse length at which zero-drag solutions exist. 

Since non-linear effects have played such a dominant r61e in the present problem, it is 

natural to suspect that they may continue to be of  equal importance in the practical design of  

underwater craft, such as submarines, moving beneath a free surface. Of course, the flow about 

such craft involves additional physical processes, such as circulation about the body and flow 

of  fluid between the body and the bot tom,  and it is no longer clear that non-linear zero-drag 

solutions are possible in this case. In addition, it is possible that the effects of  non-linearity 

may be lessened somewhat in the case o f  fully three-dimensional steady flow about submerged 

bodies. 

6. Acknowledgement: 

This work was supported by ARGC (Australian Research Grants Committee) grant number 
F76/15343R at the University of  Adelaide. 

References 

[1] L. K. Forbes, On the wave resistance of a submerged semi-elliptical body, J. Eng. Math. 15 (1981) 
287-298. 

[2] H. Lamb, Hydrodynamics, 6th ed., Cambridge University Press (1932). 
[3] C. yon Kerczek and N. Salvesen, Nonlinear free-surface effects - the dependence on Froude number, 

Proc. 2nd Int. Conf. on Numerical Ship Hydrodynamics (1977) 292-300. 
[4] L. W. Schwartz, Nonlinear solution for an applied overpressure on a moving stream, J. Eng. Math. 

15 (1981) 147-156. 
[5] L. K. Forbes and L. W. Schwartz, Free-surface flow over a semi-circular obstruction, to appear in 

J. Fluid Mech. (1982). 


